Isomeric product detection in the heterogeneous reaction of hydroxyl radicals with aerosol composed of branched and linear unsaturated organic molecules.
نویسندگان
چکیده
The influence of molecular structure (branched vs linear) on product formation in the heterogeneous oxidation of unsaturated organic aerosol is investigated. Particle phase product isomers formed from the reaction of squalene (C30H50, a branched alkene with six C═C double bonds) and linolenic acid (C18H30O2, a linear carboxylic acid with three C═C double bonds) with OH radicals are identified and quantified using two-dimensional gas chromatography-mass spectrometry. The reactions are measured at low and high [O2] (∼1% vs 10% [O2]) to understand the roles of hydroxyalkyl and hydroxyperoxy radical intermediates in product formation. A key reaction step is OH addition to a C═C double bond to form a hydroxyalkyl radical. In addition, allylic alkyl radicals, formed from H atom abstraction reactions by hydroxyalkyl or OH radicals play important roles in the chemistry of product formation. Functionalization products dominate the squalene reaction at ∼1% [O2], with the total abundance of observed functionalization products being approximately equal to the fragmentation products at 10% [O2]. The large abundance of squalene fragmentation products at 10% [O2] is attributed to the formation and dissociation of tertiary hydroxyalkoxy radical intermediates. For linolenic acid aerosol, the formation of functionalization products dominates the reaction at both ∼1% and 10% [O2], suggesting that the formation and dissociation of secondary hydroxyalkoxy radicals are minor reaction channels for linear molecules. The distribution of linolenic acid functionalization products depends upon [O2], indicating that O2 controls the reaction pathways of the secondary hydroxyalkyl radical. For both reactions, alcohols are formed in favor of carbonyl functional groups, suggesting that there are some key differences between heterogeneous reactions involving allylic radical intermediates and those reactions of OH radicals with simple saturated hydrocarbons.
منابع مشابه
An EPR Study of Heterogeneous Reaction of CH3O2 Radicals with Organic Compounds: Effect of Organic Compound and Surface Nature
The reaction of CH3O2 radicals with acetaldehyde on the solid surface of NH4NO3 has been studied in a flow capillary reactor at low pressure and room temperature. The experiments were performed using EPR spectrometer combined with the kinetic method of radicals freezing. Peroxy radicals revealed an oscillation complex behavior during the process regarding to the phenomenon of radicals multiplic...
متن کاملLarge enhancement in the heterogeneous oxidation rate of organic aerosols by hydroxyl radicals in the presence of nitric oxide.
In the troposphere, the heterogeneous lifetime of an organic molecule in an aerosol exposed to hydroxyl radicals (OH) is thought to be weeks, which is orders of magnitude slower than the analogous gas phase reactions (hours). Here, we report an unexpectedly large acceleration in the effective heterogeneous OH reaction rate in the presence of NO. This 10-50 fold acceleration originates from free...
متن کاملNanoscale interfacial gradients formed by the reactive uptake of OH radicals onto viscous aerosol surfaces
A key but poorly understood chemical process is how gas phase uptake is governed by the relative mobility of molecules at an interface of an atmospheric aerosol. Citric acid (CA), a model system for oxygenated organic aerosol, is used to examine how changes in viscosity, due to changing water content, govern the reactive uptake of gas phase hydroxyl radicals (OH). By comparing the reaction kine...
متن کاملComputational Model of Reaction Mechanism of Alkyl Peroxy Radicals with Organic Compounds in the Presence and Absence of Oxygen
On the basis of experimental data a kinetic model for the heterogeneous interaction between alkylperoxyradicals and organic compounds in Langmuir- Hinshelwood approach at room temperature has been offered.The effect of oxygen on the kinetics of process in the presence, [O2]o = 1 x 1011 – 1.6 x 1012 molecules.cm-2, and absence of oxygen has been analyzed. Over time the chain degenerate branching...
متن کاملIntelligent catalysts for ethylene oligomerization and polymerization
EEthylene polymerization catalysts became available in an enormous variety. The challenge in this research is to find catalysts that are able to connect ethylene molecules in such a way that not only linear chains are produced but variations like branched materials that possess very interesting mechanical properties like linear low density polyethylene (LLDPE). In this contribution, three diffe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The journal of physical chemistry. A
دوره 118 49 شماره
صفحات -
تاریخ انتشار 2014